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(WHERE TO FIND WHAT YOU NEED TO KNOW) ‘
I. Preface

over the years, PRODYN Technologies has received numerous inquiries
and requests for information regarding the principles and
applications of Electromagnetic field sensors. Many inquiries come
from customers who are not EM specialists, but are aware of EM
phenomena and are quite properly concerned about EM effects on the
systems they are dealing with. A common element in these inquiries
is a desire to understand the principles of EM phenomena well
enough to assess their effects without having to get a PhD in EM
theory. To meet this need, PRODYN publishes Application Notes, th
objective of which is to demystify the art and expound the o
relatively simple principles of EM measurements (the simple stuff
which the "in group" has always taken for granted that everyone
else already knows). ' :

In the ElectroMagnetic Pulse field alone, there is a voluminous
collection of informal "notes", The index to which runs nearly 200
pages! .The existence of such a vast liturgy is intimidating, and
carries a false implication that one must have read and understood
it all in order to be able to even think about the effects of EM
phenomena. :

As the variety and sophistication of EM test instrumentation
explodes on the market, we remember the classic tale of the
Emperor' s New Clothes (Note 1), wherein a weaver and a tailor [EM
test equipment manufacturer and salesman] approach the emperor
[customer] with a proposal to make for him the finest possible
suite of new clothes [set of EM test equipment]. PRODYN
Technologies does not offer elaborate systems laboriously
synthesized of magic materials, and one need be neither worthy nor
competent to appreciate the beauty of our wares. Instead, PRODYN
Technologies has chosen to pursue excellence by implementing the
profound yet simple elegance of the fundamentals of EM phenomena in
its products. This article seeks to articulate the elegance of the
fundamentals of EM measurements in our literature. It is written
for those who have other things on their agenda besides mastery of
EM theory, who don’ t necessarily weep reverently over it's
profundity, but who are anxious to benefit from its simplicity.
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II. Introduction:

In this note, we will discuss the topics we have been asked about
most. Many have been discussed in other PRODYN Application Notes,
which are incorporated as appendices to this note. We will
summarize and refer to them in what we hope will be a logical
sequence. We will simply present formulary without proof, since
rigorous developments are found in the application notes and other
references cited. We will discuss ElectroMagnetic radiation
itself first, then move on to how radiated EM fields are measured.
Parenthetic numbered notes (Note #) are located at the end of the
article. They provide further insight and entertainment, but they
need not be read to maintain continuity.

III. ElectroMagnetic Radiation

ElectroMagnetic radiation is the transportation of energy through a
medium by simultaneous propagation of a time variant electric field
and an associated covariant magnetic field. EM radiation can be in
the form of a continuous wave (CW) as in radio waves, or a single
burst as in an ElectroMagnetic Pulse (EMP). The electric and
magnetic fields which occur in a traveling wave or a burst are
related to each other, to the power transmitted by the wave or
burst and to the properties of the medium (we first consider free
space). The relationship is described by the Poynting Vector 8:

8=ExH= BEXB/ jig= DXB/ pe,= c2DxB (1)

where

8 = power density being transported in the direction of the
vector, w/m?

electric field strength (vector), v/m

permittivity of free space, 8.85x10°12 farad/m or coul/v-m

electric displacement (vector), coul/m?, (= €.,E in free space)

magnetic field strength (vector), amp/m v

permeability of free space, 1.26x10"° h/m or weber/amp-m
(1 weber = 1 v-sec and 1 weber/amp = 1 h), or, fundamen-
tally, v-sec/amp-m

magnetic induction (vector), weber/m? or v-sec/m? (= p.H in
free space) (1 weber/m = 1 Tesla = 10% Gauss)

c = speed of light in free space, 3x10° m/sec

E
€

oo
LI

Ko

The Poynting vector and its constituents are described in Appendix
A (PAN 192, Electric & Magnetic Field Sensor Application), p 4.
The electric and magnetic fields are orthogonal, so the magnitude
of the Poynting vector is EH (most commonly written in the form
EB/i,) , and the direction is the direction of propagation. The
Poynting vector readily describes how an EM wave or burst transmits
power through an area perpendicular to the direction of
‘propagation: .
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P= [8'dA = 8SA,
or 8§ = P/A = EB/u, (2)

The power of the Poynting vector (pun intended) as
an analytical tool can hardly be overstated. Some of the high
priests of EM theory will go so far as to state that if the
Poynting vector can be evaluated, the problem can be solved.

The crowning achievement of Maxwell' s field theory is the
felztionship of the speed of light to the properties of free space
Note 2):

? = 1pse, (3)

This relationship (the ultimate example of elegance - profound yet
simple), is used to derive the various forms of the Poynting vector
in Equation 1. It is also used to define another convenient
property:

C ko = 1/cey =V /€y = 2o, ' (4)
the impedance of free space (Note 2).

Another elegant result of describing EM radiation with Maxwell's
equations is that the speed of propagation of the wave or burst is
given by the ratio of its electric and magnetic components:

4 c = E/B (5)
Combining the relationship between propagation speed and field
strength (Equation 5) with the definition of the magnitude of the

Poynting vector (Equation 2) and the definition of the impedance of
free space (Equation 4), we obtain an interesting result:

§ = P/A = EB/u, = E*/cu, = E2/Z,

or P = E2a/32, (6)
E’A has the units of volts_2, and Z, has units of ohms. The
analogy to Ohms law (P = V2/R) is obvious, irresistible and valid.
In fact, the Poynting vector can be applied to a length of wire to
calculate the electrical power infused in (or radiated from) it.

The utility of the Poynting vector. in EM measurements lies in the
ability to measure either or both of the constituent field
intensities and calculate the radiated power density, or to
calculate either or both of the constituent field intensities from
a specified radiated power density. This is discussed in more
detail in Appendix A (PAN 192, Electric & Magnetic Field Sensor
Application), p 4. The pertinent formulae are:
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S = P/A = EB,/2p, (7
or, using E, = cB,

E, = Y2ug € S and B, = V2u.S/c (8)

The Frequency and Time domains (Bandwidth vs Rise Time)

It is most convenient to consider continuous wave (CW) Electro-
Magnetic radiation in the frequency domain, and ElectroMagnetic
Pulse (EMP) bursts in the time domain. This leads to expressing
the frequency range or bandwidth of a measurement system used for

' CW measurements, while expressing the rise time of a measurement
system (perhaps the same system) used for pulse measurements. It
is helpful to remember that CW and EMP radiation are two forms of
the same phenomenon, and that both forms can be considered in
either domain. In other words, a sine wave has a rise time and a
pulse has an equivalent frequency (Note 3). The magnetic field in
a CW is B(t) = B, sin 2nft, where B, is the amplitude or maximum
value, £ is the %requency or the reciprocal of the period T and t
is the time. The signal induced in a conducing loop of area A,
normal to this field, is directly proportional to the time rate of
change, or derivative of the magnetic field intensity (Faraday's
Law, V = dB/dt A). The derivative of B is 2nf B, cos 2mft so it
has the same waveform except for amplitude magnification of 2nf
and a phase shift of /2. Note that as frequency increases, the
amplitude of the derivative of the field intensity increases, so
that at high frequencies, even low field intensities give rise to
high rates of change, and induction, which is directly proportional
to the rate of change, is high. This is what makes radio feasible,
and the higher the frequency (the shorter the wavelength, hence the
term "short wave radio"), the lower the power required to induce a
given signal in a radio antenna at a given distance from the
transmitter.

The fields in an EMP are often best represented by exponential,
rather than sinusoidal functions. This is discussed in more detail
in Appendix B (PAN 1195, The Exponential Model of ElectroMagnetic
Pulse). A typical burst might have a magnetic field intensity
component described by a double exponential pulse function of the
form :

B(t) = B, (e™at/T - e7bt/T) ' (9)
where:

B, = the initial value of magnetic field source function (not to be
confused with B,, the maximum value of B(t))

discharging coefficgent

charging coefficient, = a+l

time constant of the charging source function.

oo
[
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This function is the product of a charging function of

the form 1 - e~t/T and a discharging function of the

form B,e */3T, The product has physical meaning in that

a source of radiant energy charges the medium at the

point under consideration, while the energy radiating

away from the point under consideration simultaneously
discharges the medium. o

The rise time of a pulse is usually taken as the time required for
the function to rise from 10 to 90% of its maximum value (more on
this later). The peak time t_ or time of maximum value is the time
at which B(t) reaches B.. Thg width of a pulse is usually taken as
the "full width half maﬁimum," the time it takes B(t) to go from
Bp/z to By to Bp/2 again.

The derivative of B is the time rate of change of B:

dB/dt = B, /1 (be™Pt/T - aeat/T) (10)

This function has the same mathematical form as the function from
which it was derived, as is the case with CW, but the constants
have a significant effect on the shape of the derived function,
whereas with CW, the constants affect only the amplitude and the
phase, while the shape remains sinusoidal. Another common feature
is that the maximum value of the derivative becomes large as the
rise time, which is proportional to the time constant, becomes
small. Again, with short rise times (high equivalent frequencies),
even low field intensities give rise to high rates of change; and
induction, which is directly proportional to the rate of change, is
-high. This is what makes EMP bursts such a threat to eléctronic
systems, and the shorter the rise time, the lower the power
required to induce a given spurious signal in a piece of electronic
equipment at a given distance from the source. '

The literature is full of derivations of the relationship between
frequency and rise time. The author’' s favorite, given in Appendix
B (PAN 1195, The Exponential Model of ElectroMagnetic Pulse),
equates the initial slope and geak value of an exponential pulse of
the form B(t) = B, (e™2%/T - @™Bt/T) to the initial slope and peak
value (amplitude) of a sine wave B(t) = B, sin 2nf t, as shown in
Figure 1. This results in a useful relatlonship between the time
constant of the pulse and the period of the sine wave:

T/B, = T/2mB, (11)

A sine wave rises from zero to its maximum value in 1/4 of the
period, or .25T = .25/f. If one calculates the time it takes for
the pulse to rise from zero to its maximum value (by setting
Equation 10 = 0) and then uses Equation 11 to relate to the period
of the sine wave, alas! The rise time is .44 T = .44/f. This is
because the rate of change of the double exponential pulse
decreases exponentially as the value
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Figure 1. Relationship between exponential pulse and sine wave.

increases, which means that the last 10% of the rise takes 40% of
the rise time, while the first 10% only takes only 4%. Early in
the history of EMP engineering, some bright young star made the
practical observation that if we define the rise time of a pulse as
the time it takes to get from 10% to 90% of the maximum, then the
pulse rise time is 100% - 40%- 4% = 56% of .44 T, which, lo and
behold, is .25 T! Regardless of the validity of the premise, and
regardless of the fact that the "10 to 90%" rise time of a sine
wave is only .16 T, the paradigm was enshrined:

t, = .25 T = ,25/f,

or £, =.1/T = .25/t, ' (12)
where:
b equivalent frequency of the pulse = frequency of the sine wave

period of the sine wave .
100% rise time of the sine wave and 10 to 90% rise time of the

pulse

3
gt

te

This result is used in Appendix C (PAN 890, I vs I-Dot), pp 7-8 to
derive the more commonly used expression
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£, =1/T =.35/t, (13)

where £, is the 3 dB equivalent frequency of the pulse,
the frequency of the sine wave whose amplitude is 3 dB
down from the sine wave of frequency f, due to :
frequency response limitations (Note 4, dB defined).

IV. EM Field Measurements

Electric ("D-dot") and magnetic ("B-dot") field sensors which were
developed to measure Electro-Magnetic Pulse (EMP) phenomena are now
being used to measure lightning and other EM phenomena. These new
applications typically do not employ the same jargon the EMP
practitioners use, so many potential users are having difficulty
using the sensor "transfer function" to pick the appropriate size
sensor. '

The field sensor transfer function is a statement of the
sensitivity of the sensor, giving the current or voltage output as
a function of the flux of the electric or magnetic field through
the sensor and the size (equivalent area) of the sensor. The
sensitivity of the sensor is in fact its equivalent area. The term
"sensor" is used to distinguish this class of instruments, which
measure without transforming energy, from "transducers", which
measure by transforming energy from one form to another (egq,
mechanical to electrical as in a strain gage). The sensor is not
encumbered by an energy transformation mechanism (electrical
phenomena are sensed electrically), whereas the transducer depends
on some transformation mechanism which usually has some
nonlinearity and variability over time. These deviations from
ideal performance make it necessary to calibrate transducers
periodically. The equivalent area of a sensor is not subject to
change, so the sensor needs only verification of its equivalent
area. Once the equivalent area of a given model is established,
the variance between units of that model is insignificant, so
periodic calibration is unnecessary.

The development of -the transfer functions of these sensors is given
in resplendent detail in Appendix A (PAN 192, Electric & Magnetic
Field Sensor Application) pp 1-3, wherein Maxwell's equations are
applied to simple sensing elements to derive relationships between
the field strength and the area of the element. Gauss's Law is
applied to a conductive disk in a ground plane to derive the
transfer function for D-dot sensors:

V, = R A,y dD/dt . (14)

Faraday's Law is applied to a conductive loop in a plane normal to
a magnetic field to derive the transfer function for B-dot sensors:

V, = B, dB/dt | (15)
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Figure 2. Electric and magnetic fields being measured with D-dot
and B-dot sensors.

The Poynting vector and its constituent electric and magnetic
vectors are shown in Figure 2, with a D-dot sensor and a B-dot
sensor positioned so as to measure the electric and magnetic field
strengths. The equivalent areas of PRODYN sensors are physically
shown as vectors on the sensor. One simply aligns the vector shown
on the sensor with the vector of the field to be measured.

It is often necessary to measure currents induced in various
cables, structural members, aircraft components, etc. Current
measurements are really just measurements of the magnetic field
associated with the current being measured. Thus an I-dot sensor
may be thought of as a set of B-dot sensors assembled into a :
toroid. This could be implemented by installing six or eight small
B-dot sensors around the girth of a missile body to measure the
total current flowing through the missile. This topic is discussed
in Appendix C (PAN 890, I vs I-Dot), p 1.

One of the most frustrating problems in EM field measurements is
the issue of units. The most intense confusion seems to be
centered in magnetic units. The units needed for EM field
measurements are discussed in Appendix A (PAN 192, Electric &
Magnetic Field Sensor Application) p 1. The bewildering array of
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magnetic units (8 units of magnetic field intensity?)

is- addressed in the same note, p 6. The best advice we

can give is to convert derived units (webers, gauss,

farads, henries, etc) to more fundamental units

{(charge, mass, length, time, and voltage and current).
For example, prefer units of volt-seconds to Webers, ohm-seconds to
henries, coluombs/volt to farads, and even volts/amp to ohms. The
D-dot sensor transfer function works directly with D-dot expressed
in amps/meter? , and R expressed in volts/amp. The B-dot sensor
transfer function works directly with B-dot expressed in
volts/meter?.

The theoretical development of the transfer functions of D-dot and
B~dot sensors is summarized in Appendix A (PAN 192, Electric &
Magnetic Field Sensor Application) pp 8-10. A d1fferent1a1
equation representing the current or voltage in an equivalent
circuit including the sensing element and a capacitance (for D-dot
sensors) or an inductance (for B-dot sensors) is written in the
time domain and then transformed into the frequency domain by
Laplace Transforms, where it is solved for the output. In both
cases, the output is represented as a quotient whose numerator is a
field flux - area product and whose denominator contains two terms,
one being dependent on the temporal characteristics (the time
constant) of the sensor and the other being unity.

io(8) OF Vo(8) = Ay 58(s)/(sTq + 1) ' (16)
where

ij(s) or V (s) = gensor output as a function of frequency
s’ = jo. jQ = -1 and }je} = |s] = 0. © = 27f . s replaces t in
the Laplace transform, $[F(t)] = F(s) and Q[dF/dt] = gF(s).

= The equivalent area of the sensor, m?

s‘%s) = Laplace transform of first time derivative of Field flux (D
for D-dot sensor, B for B-dot sensor). See Appendix A, p 9.
T, = time constant of the sensor (RC for D-dot sensors, L/R for B-
dot sensors)

The transfer functions are obtained by neglecting the frequency
dependent term and are only valid when the signal frequency is low
enough that the frequency dependent term is small with respect to
unity, ie, |s7g] = o1, <<
1. When this condition is met,

i (s) or V,(s) = Aeq 8d(s)
or, transforming back to the time domain,

ig(t) or Vy(t) = RAgy de(t)/dt = A, ¥-dot : (17)

The sensor is said to be operating in the "differentiating mode",
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ie, the output is proportional to the first time derivative of the
field intensity, hence the suffix "-dot" (Note 5). The
differentiating mode of operation is depicted in Figure 3a.
PRODYN's D-dot and B-dot sensors are designed with very small time
constants such that sr, is small compared to unity in the high
megahertz to low gigahertz frequency range.

When the signal frequency is very high, the frequency dependent
terms become large with respect to unity and the high frequency
transfer function becomes valid. When this condition prevails, ie,
18Tg] = o1y >> 1,

is(s) or V,(s) = Roq ¥(8) /14
or, transforming back to the time domain,
io(t) or Vo(t) = Ay, #(t)/1, (18)

The sensor is said to be operating in the "self integrating" mode,
ie, the output is proportional to the integral of the derivative of
the field intensity (the field intensity itself). The self
integrating mode of operation is depicted in Figure 3c. Current
probes are designed with large time constants such that sr, is
large compared to unity. The current probe cannot properly be
called a current sensor because it does not respond to direct
current (for which I-dot and the associated B-dot = 0). It is
designed to sense and integrate the first time derivative of the
current, or, more precisely, the magnetic field associated with the
current being measured. The integration process depends physically
on the time constant of the probe, which depends on the properties
of the medium in the working volume of the probe, which depend on
the frequency of the current being measured. In short, the current
probe is a transducer, and as such requires calibration.

When the signal frequency is high enough that the low frequency
transfer function is not valid, but not high enough to validate the
high frequency transfer function, the sensor is said to be
operating in the "transitional mode" (see Figure 3b). In this
mode, the full transfer function must be used without benefit of
the simplifications which apply to the low and high frequency
modes. The transition frequency is defined as that frequency for
which the frequency dependent term equals unity. The complete
transfer functions are represented by the graph in Figure 3, which
shows that the actual transfer function approaches the low and high
frequency transfer functions asymptotically. A more complete
discussion of the frequency response of differentiating sensors is
given in Appendix C (PAN 890, I vs I-dot), pp 2-7, wherein the
error factors given in Figure 3 are derived.

It is often necessary to transform a specified cw power rating to
the maximum pulse frequency a current probe can handle. Appendix
C (PAN 890, I vs I-dot), p 8 compares the energy in one cycle of a
sine wave of frequency f, to the energy in a pulse in a series of
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Figure 3. Operating modes of field sensors.
pulses with repetition rate f.. The result is
= ' 2
£, = PR [/ V2 ty, (19)

= power in the continuous wave, watts
= sensor output impedance (usually 50 or 100 ohms)

peak sensor output voltag
full width half maximum amplitude of th

secC.

e for the pulse, volts
e sensor output pulse,
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This is a continuous power dissipation rating. If the concern is
for a single pulse, sustained heat dissipation is unnecessary, and
he peak voltage is limited by the maximum output voltage of the
sensor.

NOTES:

1. The weaver and the tailor describe the proposed suit in glowing
terms, concluding by mentioning a peculiar characteristic of the
material: it is so fine and pure that only those worthy and
competent to hold their positions can see it - It is invisible to
any who are not. The emperor agrees to the proposition, whereupon
the consummate clothiers set up a loom in the court and begin
weaving the fabric, describing it eloquently, and receiving the
approval of all in the court. Someone in the court, in order to
demonstrate his worthiness and competence, suggests that such an
elegant suit should be shown to the whole empire at a grand parade.
Not to be suspected of unworthiness or incompetence, everyone
quickly agrees. After a long series of enhancements, [scope
increases] suggested by the weaver and the tailor, the suite is
ready, and the parade begins.. The people manifest ecstatic
approbation, except for one child, who, not having learned of the
peculiar characteristic of the fabric, innocently exclaims, "he has
nothing on but his underwear!"

2. Free space is often called a void, but for purposes of EM
theory, it is really a medium with ultimately small yet finite
properties, permeability ( iu'°' 1.26x10"% v-sec/amp-m) and
permittivity (e, 8.85x1071% ~ amp-sec/v-m). These properties
determine the speed of light in free space:

c = 1/Vhge, = 3x10% m/sec
The serious student will plug the values into the equation
(including units, please) and verify this fundamental truth. This
exercise will prepare the student for the following stimulating, if
tangential, exercise:

If we could modify a medium so as to decrease pu, or €, or both so
that u,' < pg and/or €,' < €, then ‘

c' > ¢,

and speeds faster than light would be possible. If we could
decrease either property to zero, the speed of light in that medium
would be infinite. '

3. Periodic functions can be expanded into Forier Series of the
form

f(t) = a,/2 + a, cos 2nft + a, cos 4nft ... + a, cos 2nnrft + ...
+ by sin 2nft + b, sin 4nft ... + b, sin 2nmft + ...
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By choosing the appropriate periodic function, shifting

it so that it is symmetrical about t = 0 and performing

a half range expansion for t > 0, virtually any

function can be synthesized from Forier series terms.

A pulse can thus be synthesized by combining

appropriate sine and cosine functions of various
frequencies and amplitudes. The lowest frequency component
required (f) is the equivalent frequency.

4. Decibels (dB) are units of the logarithmic ratio between two
related quantities such as the input and output of a device. The
Decibel is defined as 10 times a logarithmic power ratio, but it
has been adapted to describe voltage or current ratios. The
defining relation Ggz = 10 Log (P,/P,) can be used with Equation 6
to illustrate:

Ggp = 10 Log (P,/P;) = 10 Log [(E,%A/Z,)/(E,?A/Z,)] = 10 Log
[E,/E;)?

GdB = 20 Log (E2/E1)
The exponential form of this relation is
Ep/E; = 10°%/20 |
Some numerical examples of this relation are given here:
E,/E; 100 10 1 .707 .5 1 .01 .001  .0001
(10m) 10 10! 10° 1035 1073 1071 1072 1073 107
Gap 40 20 0dB -3 -6 ~20 -40 -60 =80
A device that increases a signal by a factor of 100 has a gain of
40dB. A device that decreases a signal by a factor .5 has a loss
(negative gain) of -6dB. :
5. The notation dB/dt is equivalent to the term "B-dot", which
expresses the mathematical notation
L ]
B = dB/dt = first time derivative of B(t) = "B-dot"
"B-dot" has only two syllables and is much easier to say than "dB/d4at"
which has four, and it is much faster to write by hand. Most

engineers are verbally and scriptorally lazy, so the term "B-dot"
stuck.
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APPENDICES

The Appendices to this article are PRODYN Application Notes (PANs) which were written
independently and stand alone as aids to users of Electromagnetic test equipment. They are
bound into and incorporated in this article, but are paginated independently.
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Reproduction and Annotation of the EMP Sensor Application Guide
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