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ELECTRIC & MAGNETIC FIELD SENSOR APPLICATION
(A WAY TO GET FROM MAXWELL'S EQUATIONS TO FIELD MEASUREMENTS)

-Electric ("D-Dot") and magnetic ("B-Dot") field sensors, which were
developed to measure Electro-Magnetic Pulse (EMP) phenomena, are now
being used to measure lightning and other pulse and continuous wave
EM phenomena. These new applications typically do not employ the same
jargon the EMP practitioners use, so many potential users are having
difficulty using the sensor "transfer function" to choose the
appropriate size sensor.

The field sensor transfer function is a statement of the sensitivity
of the sensor, giving the voltage output as a function of the flux of
the electric or magnetic field through the sensor and the size
(equivalent area) of the sensor. The sensitivity of the sensor is,
in fact, its equivalent area. The development of the transfer
functions of these sensors requires the following definitions:

B, electric field strength, v/m
permittivity constant, 8.85x10"12 farad/m or coul/v-m
D, electric displacement, coul/mz, (= €,EB in free space)
H, magnetic field strength, amp/m
4, permeability, weber/amp-m, (= Bobg)
B, = relative permeability, dimensionless
B, = permeability of free space, 47x10~7 weber/amp-m or h/m
(1 weber = 1 v-sec and_1 weber/amp_ = 1 h)
B, magnetic induction, weber/m‘ or v-sec/m‘ (= uH)
y(1 weber/m® = 1 Tesla = 10% Gauss)
¢, Field flux

¢g = fn-da, electric flux through a surface, v-m

¢p = fBoda, magnetic flux through the surface enclosed by
a loop, weber or v-sec

The transfer function for an electric field (D-Dot) sensor is
developed by applying Gauss's law to a conductive element in, but
electrically isolated from, a ground plane (see Figure 1). Let the
element be enclosed in a closed (Gaussian) surface. Then:

Pg = fn-dn =  q/e, : ' (Gauss's Law),
where q is the dharge enclosed by the Gaussian surface. We generally

arrange the sensor geometry so that the integral is easy to calculate,
and we write
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[Bean = E Ayq (1)

where Ay is the equivalent area

of the sensor. The equivalent E CLOSED GAUSSIAN
area is defined by rewriting O _/ SURFACE
Equation (1): : 7 .
[Bean /
Apg = 5 (2)

The transfer function for a
magnetic field (B-Dot) sensor is
developed by applying Faraday's
law to the surface enclosed by a
conductive loop (see Figure 2).
Let the loop be interrupted by a
voltage sensing gap. Then: Pigure 1. Conductive element in
- a ground plane ' .

-4 ¢B=-4d_ Iaodn =fn-d1 (Faradays's Law),
dt dt

where E is the electric field
associated with the magnetic field
and dl is a differential element
of the loop. The integral on the
right yields the voltage at the
gap, V,. As with the electric dx \E
field sensor, we generally arrange g dr

the sensor geometry so that the
integral on the left is easy to
calculate, and we write - v @,ja.dA

B8
[Bean = B A (3)
. o . _g?a__ 2 foda-fed
where A, is again the equivalent
area of the sensor. The equiva-
lent area is defined by rewriting
Equation (3): , _ Figure 2. Conductive loop
= JBedA 4
Ay L‘g—" (4)

For both sensors, the equivalent area is a scalar constant which
results from frodh, depending on the magnitude and direction of the
field F (B or B) and the size (magnitude) and orientation (direction)
of the sensing element. Once the geometry of a sensing element is
determined, its equivalent area is defined, which in turn fixes its
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sensitivity to the field component along its axis. Since the
sensitivity of the element is the equivalent area, which is constant,

eriodic o

The term "sensor" is used to distinguish this class of instruments,
which measure without transforming energy, from "transducers®, which
measure by transforming energy from one form to another (eg,
mechanical to electrical as in a strain gage). The sengor is not
encumbered by an energy transformation mechanism (electrical phenomena
are sensed electrically), whereas the transducer depends on some
transformation mechanism which usually has some nonlinearity and
variability over time. These deviations from ideal performance make
it necessary to calibrate transducers periodically.

Electric and magnetic field sensors measure the first time derivative
of the field. Gauss's Law for the electric field sensor may be
rewritten

E A‘q = q/e, (5)

To measure .the charge on the sensor element, we allow it to flow
through an impedance, creating a current. This is expressed by
differentiating Equation (5):

d dg _ ; v
- € EA = "2 =1= _0
at > % & R

where i is the current flowing through the transmission line to the
measurement system, R is the impedance of the transmission line and
v, is the voltage across R. Using the definition D = ¢ E and dD/dt
= €, dE/dt, we write

DA, R=Y, (6)
Equation (6) is the transfer function of the D-Dot sensor.
Using Equation (3), Faraday's Law for the magnetic field sensor may
be rewritten ,

-d Ba,_= [Bedl =V
at ¢ °

or, more simply,

B Ay = Vo (7)

the transfer function of the B-Dot sensor.
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The electric and magnetic fields which occur in a traveling
electromagnetic wave are related to each ather and to the power
transmitted by the wave. The relationship is described by the
Poynting Vector S, which is a measure of the power transmitted:

1
S=~EXxB"
b

The Poynting vector ‘and its
constituents are illustrated in’
Figure 3. The magnitude of the
vector is the product of the
electric and magnetic fields,
which represents the intensity
of the traveling wave. It is
usually given in terms of power
per unit area, eg, w/m?. The
direction of the vector is - the
direction of propagation. If a
wave 1is traveling '~ through a
surface of area A, the power
transmitted through the area is:

P = S-dA = SA

Then the p ower dens ity or riguro 3. The Poynting Vector
intgnsity of the wave is
S = p/a, w/m?

For an electromagnetic wéve propagating in free space, the magnitude
of the Poynting vector is the power density:

S = EB/p, = P/A.

where S, E and B are the average values of the power density, electric
field strength and magnetic induction. E and B vary sinusoidally,» S0

"E = zp/ﬁ and B =. Bp/ﬁ
Then
S = EgB,/2uy = P/A. B ' ‘ . (8)
This expression can be solved for eitherl'Ep or Bi, using Eps cag: o
E, = V24c8  and B, = V2i,5/<.

We can measure E, and/or B, with a D-dot. and/dr ‘a B-dot sensor, and .
calculate the power density in the wave.
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‘We have shown that both
electric and @magnetic field E
sensors measure the first time |[kv/m

derivative of the field. strength 6@ TN

by sensing the flux of the field 40-

through the sensor area. The

voltage output of the sensor is 99

the field flux density (fiela

intensity) multiplied by the 201 26/f

equivalent area (sensitivity) of 104 ‘

the sensing element. For example, .

suppose it is necessary to record : 3

an electric field waveform which 12 t s
is expected to be an exponential Figure €. —Electric Fieia

step with a magnitude of about 50
kV/m and a risetime on the order
of .5 microseconds (see Figure 4).
The risetime can be converted to an equivalent frequency (the freq—
uency having the same maximum rate of change as the step) by the
simple formula (developed in Reference 1) .f = .25/t,, where f is the
equivalent frequency and t_ is the 10-90% risetime of the step:

exponential step

£ = .25/t = _ .25 = .5x10%/sec = 500 khz
.5x107% sec

The equivalent cw waveform, a quarter sine step, may be represented
by

D(t) = €,E(t) = eonp' sin 2nft

so that
D = 2rrfe‘,‘l=.!p Cos 2nft

and D fe E
p = 2T, | _
= 27 .5%10° g.g5x10™12 _coul 50x10° V_=1.39 _A_

sec V-nm m m?

Suppose now that we are using a D-dot sensor with an equivalent area
of 107 m2 and a balanced, 100 chm output. From the D-Dot sensor
transfer function (Equation (6)) we have: '

Vo =R A, D = 100 ohm (10~2 m?®) 1.39 A/m? = 1.39 V
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If we desire more or less output, we simply use a larger or
smaller sensor. Choosing the size sensor is thus a matter of
calculating the maximum value -of D-Dot and matching the desired
voltage output with the equivalent area using the transfer function.

The principle illustrated in the foregoing appiies to magnetic field
sensors also, but there seems to be a wider and more: confusing array
of parameters used to specify the field intensity, e.g. gammas, Gauss,
Gilberts, Henries, lines (Maxwells) /cmz, Oersteds, Teslas, Webers/mz,
and doubtless some other enterprising graduate student has done or
will define another unit_ and name it after himself. Webers/mz, which
are actually volt-seconds/mz, work best with the B-Dot sensor transfer
function, so some conversion relationships are listed here:

Units of magnetic flux density (B):

1 Weber _ ; tesia = 10% gauss = 10% -1ines _ 105 gamma
o2 "~ en?

Units of magnetic induction (H):

1 amp-turn _ 47  o..oi4egq = 47 gilbert
n 103 10° cm

Units of magnetic permeability (u):

1 Weber _ , v-sec _, ; henry _ , ohm-sec
amp-m amp-m m m

For example, suppose it is neces- H

sary to record a magnetic field |Oerst
waveform which is expected to be 51 TS
an exponential step with a magni-
tude of about 5 Oersteds and a
risetime on the order of .5 micro-
seconds (see Figure 5). We first
convert the magnetic field
strength to magnetic induction by
multiplying it by the

permeability: }3 10 t, us

25/%

o D e

rigure 5. Magnetic fiela

- onential step
B, = u.H, exp .

.3
= 47x10~7 V7SeC 5 cersteds __ 10 amp .
amp-m 41 ocersted m
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m2

The risetime can be converted to an equivalent frequency just as
before: .

£=.25/t, = -25 = .5x10%/sec = 500 khz
.5x107% sec

The maximum time rate of change is obtained as with eleétric field,
i.e., multiplying the equivalent cw frequency by the maximum change
in the field strength:

B, = 2nfB, |
| . |
= op -5¥10° go107¢ _V-seC o g s7x10® Y
sec - m? m

Suppose now that we want to select an appropriate B-dot sensor: to
produce a signal of 1 to 2 volts. From the B-dot .sensor transfer

function (Equation (7)) we have:
Vo = A.q B=2YV

A = 2 Vv = 1.27x10"3 n®

eq
1.57x10° v/m?

A common equivalent area among PRODYN B-Dot sensors is 1073 n?. With
this equivalent area, : o

= R o= -3 .2 3 2 _
VO-A.qB—lq ‘m* 1.57x10° V/m® = 1.57 V

We can simultanéously measure the electric and magnetic fields in a
continuous EM wave using a D-dot sensor with A__ = A, and output

impedance R,, and a B-dot sensbr‘ with A = Ry. Assuming the wave has
a peak electric field Ep’ a peak magnetic field Bp and frequency f,
we would expect sensor output voltages V, and V; given by Equations
(6) and (7) respectively: ,

Vp = Ay R, 27f €,E, and Vg = Ay 27f B
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The ratio of the sensor output voltages is:

Ve = Ay 2mf B, ‘= Ay B

-—

Vo | Bp By 20 €E, By By 6B

One of the most profound results of Maxwell's electromagnetic theory
is the relationship of the electric and magnetic fields in a traveling
electromagnetic wave (E = cB) and the resultant description of the
properties of the medium in which the wave travels-(c” u, €, = 1).
The field strength relationship can be rewritten as BP/EP = 1/c and
substituted in the ratio expression, giving '

Va = _ P
Vb Ay Ry cg,
The medium property relationship can be rewritten as cp, = 1/ce, =

Z, (the impedance of free space, 377 Q) and substituted in the ratio
expression, giving:

= 2% . (9)

2o

b< Ihf:

A typical PRODYN free-field D-dot sensor has a balanced output
impedance of 100 0 (two opposing 50 N impedances to ground). If the
two sensors have the same equivalent area (Ag = An) , the sensor output
ratio becomes .

Vg = 3778 - 377
v, 100 0

In other words, for a continuous electromagnetic wave in free space,
the B-dot sensor voltage output will be 3.77 times that of a D-dot
sensor with the same equivalent area and 100 0 output impedance.

Rigorous developments of the transfer functions of B-Dot and D-Dot
sensors are given .in References 2 and 3 respectively, and summarized
in Figure 6. In these developments, the sensing element is shown in
an equivalent circuit with an inductance (B-Dot) or capacitance (D-
Dot) and a load impedance (see Figure 6). A differential equation
representing current is written in the time domain and then
transformed into the frequency domain by Laplace transforms, where it
is solved for the output. In both cases, the output is represented
as a quotient whose numerator is the fluxearea product we have been
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Qi-aeqd T

In the time domain:
v

i=aP=c®+Vaci+? veonB=1 % +ri=1i+ri
at R R at |

Vo

Transforming to the frequency domain with the Laplace transform:

=‘F(s)

for WRC << 1,

V(s) = A‘q sD(s) R

v(t) = A'q D

for wRC >> 1,

V(s) = A‘q D(s)/C

(F(t)] I s = ju
e P Is] = jjui-=w
[F(t)] = sF(s) | | |
A‘q sD(s) = C sV(s) + V(s)/R A‘q sB(s) = L si(s) + R i(s)
v(s) = _Beq SD(s) R v(s) = Reg SB(S)
RCs + 1 SL/R + 1

Low frequency transfer functions (The differentiating mode):

or, transforming back to the time domain,

High frequency transfer  functions (Thefself integrating mode):

for WL/R << 1)

v(s) = A;q~sB(s)
V(t) = A, B

for wL/R >> 1,
V(s) = A‘q B(s) R/L

or, transforming back to the time domain,

V(t) = A, D/C V() = A, B R/L

Figure 6. Sensor transfer function development
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discussing and whose denominator contains two terms, one being
dependent on both the sensor characteristics and the signal frequency
(sRC for the D-~Dot sensor or sL/R for the B-Dot sensor) and the other
being unity.

The transfer functions given above are obtained by neglecting the
frequency dependent term and are only valid when the signal fregquency
is ‘low enough that the frequency dependent term is small with respect
to unity. When this condition is met, the sensor is said to be
operating in the "differentiating mode", i.e., the output is propor-
tional to the derivative of the field intensity (see Figure 7).
PRODYN's D-Dot and B-Dot sensors are designed with very small RC and
L/R "time constants" such that sRC and sL/R are small compared to
unity in the high megahertz to low gigahertz frequency range.

When the signal frequency is very high, the frequency dependent terms
sSRC and sL/R become large with respect to unity and the high frequency
transfer function becomes valid. When this condition prevails, the
sensor is said to be operating in the "self integrating” mode, i.e.,
the output is proportional to the integral of the derivative of the
field intensity. .

When the signal frequency is high enough that the low frequency
transfer function is not valid, but not high enough to validate the
high frequency transfer function, the sensor is said to be operating
. in the "transitional mode". In this mode, the full transfer function

must be used without benefit of the simplifications which apply to the
low and high frequency modes. The transition frequency is defined as
that frequency for which the frequency dependent term equals unity.
The complete transfer functions are represented by the graph in Figure
7, which shows that the actual transfer function approaches the low
and high frequency transfer functions asymptotically. A more complete
discussion of the frequency response of differentiating sensors is
given in Reference 1, wherein the error factors given in Figure 7 are
derived.
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Vv AJ/—AQDKHIAQBHm
ﬁ wWa=2mf
AquR ' AhqB
e, = A_D/C -V or AG!B/L -V
A.qD/C _ , A‘QB/L

Erfors for various values of aA= £/Ly:

a  1/10 1/7 1/4 1/3 1/2 1 - 2 3 4 7 10
e, .005 .01 .03 .05 .106 .293 | |

e, | o o .203 .105 .05 .03 .01 .005

rigu:e 7. 0pergting modes of electric and magnetic fielad sensors
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