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TECHNOLOGIES

Precision EM Instrumentation

THE EXPONENTIAL MODEL OF ELECTROMAGMETIC PULSE

ElectroMagnetic radiation is the transportation of energy through
a medium by simultaneous propagation of a time variant electric
field and an associated covariant magnetic field. EM radiation
can be in the form of a continuous wave (CW) as in radio waves,
or a single burst as in an ElectroMagnetic Pulse (EMP).

The magnetic field in a CW is B(t) = B, sin 2nft, where B_ is the
amplitude or maximum value, f is the frequency or the reciprocal
of the period T and t is the time. The signal induced in a
conducing loop of area A, normal to this field, is directly
proportional to the time rate of change, or derivative of the
magnetic field intensity (Faraday's Law, V = dB/dt A). The
derivative of B is 2nf B, cos 2mft so it has the same waveform
except for amplitude magnification of 2nf and a phase shift of
m/2. Note that as frequency increases, the amplitude of the
derivative of the field intensity increases, so that at high
frequencies, even low field intensities give rise to high rates
of change, and induction, which is directly proportional to the
rate of change, is high. This is what makes radio feasible, and
the higher the frequency (the shorter the wavelength, hence the
term “short wave radio”), the lower the power required to induce
a given signal in a radio antenna at a given distance from the
transmitter.

The fields in an EMP are often best represented by exponential,
rather than sinusoidal functions. A typical burst might have a
magnetic field intensity component described by a double
exponential pulse function of the form

B(t) = B, (e 3t/7 - e7bt/T) (1)

where:

B, = initial value of magnetic field source function (not to be
confused with B))

discharging coefficeint

charging coefficient, = a+1l

time constant of charging source function.

a
b
T

A double exponential pulse with its source functions, derivative
and antiderivative is shown in Figure 1. This function is the
product of a charging function of the form 1 - e /T and a
discharging function of the form B, e 3t/T | The product has
physical meaning in that a source of radiant energy charges the
medium at the point under consideration, while the energy
radiating away from the point under consideration simultaneously
discharges the medium. The time constant 7 is to the double
exponential pulse what the period T is to the sine wave. It is
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It is the basis of all temporal parameters, and all temporal
parameters are derived from it The peak time t_, or time of
maximum value t, (the true rise time of the pulse) is the time at
which B(t) reaches B.. These times are indicated in Figure 1.
The practical rise time of a pulse is usually taken as the time
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Figure 1. Exponential model of an ElectroMagnetic Pulse.

required for the function to rise from 10 to 90% of its maximum
value (more on this later).

The derivative of B is the time rate of change of B:

dB/dt = By /T (_ae-atlr + be-bt/r) = B, /T (be-bt/T - ae—at/T)
(2)

also shown in Figure 1. This function has the same mathematical
form as the function from which it was derived, as is the case
with CW, but the constants have a significant effect on the shape
of the derived function, whereas with CW, the constants affect
only the amplitude and the phase, while the shape remains
sinusoidal. Another common feature is that the maximum value of
the derivative becomes large as the rise time, which is
proportional to the time constant, becomes small. With short
rise times (high equivalent frequencies), even low field
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intensities give rise to high rates of change; and
induction, which is directly proportional to the rate
of change, is high. This is what makes EMP bursts such
a threat to electronic systems, and the shorter the
rise time, the lower the power required to induce a
given spurious signal in a piece of electronic
equipment at a given distance from the source. EM radiation can
be measured with instruments which sense the rate of change of
the electric or magnetic field. A B-dot sensor (magnetic field
sensor) responds to B(t) by sensing dB/dt according to Faraday’s
law of induction. The transfer function for such a sensor is
developed in PRODYN Application Note (PAN) 192, pp 2-3. It is:

V, = BAgq dB/dt, (3)

o

or in EMP-ese, “Voltage out equals Equivalent Area times B-dot”.
Thus an EMP with a magnetic field described by B(t) in Figure 1
will induce a signal described by dB/dt in Figure 1 in a B-dot
sensor. B(t) is obtained by integrating the output of the
sensor.

The time required for the pulse to rise from zero to its maximum
value, t, , is calculated by setting the derivative of B(t)
equal to O:

dB/dt = B, /T (be™PY/T - ae™at/T) = o
=> b/a =e T => t, =t ln(b/a) (4)

The maximum value of the pulse is calculated by substituting t,
in equation 1:

Bp = B(tm) = Bo (e-atm/'r - e-btm/'r)

=> B, = By[(b/a)™ - (b/a)™® ] (5)
or, letting kp = Bp/Bo = (b/a)™@ - (b/a)'b , Equation 5 can be
written as B, = kp B, -

The antiderivative of B is
B(t) = B, 7/ab (ae™Pt/T - pe~at/T), (6)
o

also shown in Figure 1. The antiderivative is a very good
representation of step functions which occur in the real world.
Many times in EMP diagnostic testing, the subject EMP is really
the leading edge of a step function such as [B(t) in Figure 1.
In this instance, the EMP (or more precicely the EM step) will
induce a signal described by B(t) in Figure 1 in a B-dot sensor.
As before, [B(t) is obtained by integrating the output of the
sensor.
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The area under the function B(t), which is proportional to the
energy in the pulse, can be calculated by integrating Equation 6
from zero to t:

ot B(t)dt = B, 7/ab (ae™Pt/T - pe at/T 1 1)

Substituting t = © into the integral gives the total area under
the curve:

A = [® B(t)dt = B, 7/ab (7)

Defining the "width" of the pulse, t,, as the area under the
curve, A, divided by the maximum value, By, ie, the area under
the curve is the width times the height,

t, = A/B = By T/B ab = T/k ab (8)
Now define t; as the start and t, as the end of the time interval
t,, so that t2 =t, + t, (see Flgure 1). Setting B(t,;) = B(ty) =
B(t; + t,) yields

t; =1 1n [(e"1/kP 2 —1) ; (e"1/kP D 1))
or, with k, = (e"l/kp a -1y ; (e”l/kp b 3y,

t, = 17 1n k, (9)
Substituting t; in Equation (1) gives the value of B at t; and

t,. Using B, = k, B, leads us to the ratio of the value at t,
and t, to the max1mum value, which we call B8:

B(ty) /By = ky(k, ™ - k,?) =8 (10)

For ordinary values of a (a >.1), B(a) rapidly approaches its
asymtote, 8' = 0.430820:

a .1 1 10 100
B(a) «3795 .4200 .4306 .4308
dag/B! 1191 .0251 .0005

For most real situations .1 < a < 10, and most often a = 1, which
leads to B(t,) = .42 Bp. The width of this pulse is not taken at
the half maximum, but rather at the "42% maximum." Actually, the
only common pulse shapes for which t, satisfies the areal
definition and is measured at the half maximum, ie, for which B =
.50, are the sine squared and triangular pulses. The single
exponential pulse (B(t) = e 3%) has B = .37 and the half sine
pulse (B(t) = sin 27ft) has B = .58. The very common practice of
deflnlng the width of all pulses as the "full width half maximum"
is more conveinent than correct.

In all the foregoing, the deflnlng parameters B, , 7, and a have
significant mathematical meaning. The author belleves that they
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also have profound physical significance. B,

determines the peak value of B(t), 7 sets the time

base and a determines the exact shape of the pulse.

The parameters can be chosen so as to model

an unlimited variety of physical phenomena. The

author’ s research is directed toward developing the
physical relationships between the defining parameters of the
exponential model and the boundary conditions of real EMPs. The
exponential model may be very useful in predicting the threat
levels from weapon data, damage potential from meterological data,
etc. The model is presently used to postulate EMP data for
systems response tests.

An important special case of the exponential model applies when an
electromagnetic pulse is propagated through free space. The time
constant of the charging source function, 7, is equal to the time
constant of the discharging source function, ar, or a = 1. 1In
this case b = 2, t, = .6931, B, = Bo/4, A = BoT/2 = 2B,T, tw = 27T
and t; = .1277. Figure 1 is an example if th1s case, with B, = 1
and 7 = 20 ns.

Rise Time and Bandwidth (Time and Frequency Domains)

It is most convenient to consider continuous wave (CW)
ElectroMagnetic radiation in the frequency domain, and
ElectroMagnetic Pulse (EMP) bursts in the time domain. This leads
to expressing the frequency range or bandwidth of a measurement
system used for CW measurements, while expressing the rise time
of a measurement system (perhaps the same system) used for pulse
measurements. It is helpful to remember that CW and EMP radiation
are two forms of the same phenomenon, and that both forms can be
considered in either domain. In other words, a sine wave has a
rise time and a pulse has an equivalent frequency. The temporal
relationship between the exponential model of an EMP and the
sinusoidal model of a CW (see Figure 2) can be derived by equating
the 1n1t1a1 sl e of a double exponential pulse of the form B(t) =
B, (e”t/at - T) to the initial slope of a sine wave B(t) = B
sin 2nf t. leferentiating both functions with respect to time
and equating the slopes at t = 0 yields:

B,/T = ZﬂBp/T (11)
Combining Equation 11 with Equation 4 yields:

tm = 1In(b/a) T Bo/2mBp
Combining this with equétion 5 yields:

t, = T ln(b/a)/2n[(b/a)-a - (b/a)=-b] (12)

or, by recalling that b = a+l1l and deflnlng ky(a) =
1n((a+1)/a)/2n[((a+l)/a)™@ - ((a+l)/a)” ], we can write

= k,T
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For ordinary values of a (a >.1), k,(a) rapidly approaches its
asymtote, Kk, ' = 0.432627:

Bp T >~ '\
90% ]
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1

0.1

t Cmcw m

Figure 2. Comparison of pulse and sine wave.

a .1 1 10 100
k(@) .5336 .4413 .4328 .4326
d k,/k,' -2334 .0200 .0004

For most real situations .1 < a < 10, and most often a = 1, which
leads to t, = .44T. This is the “0 to 100%” rise time of the
exponential pulse.

It is natural to compare the 0 to 100% rise time of the
exponential pulse to the 0 to 100% rise time of a sine wave, which
is t ., = T/4 = .26 T = .25/f, as shown in Figure 2, but alas!

The rise time of the pulse is .44 T = .44/f. This is because the
rate of change of the double exponential pulse decreases
exponentially as the value increases, which means that the last
10% of the rise takes 40% of the rise time, while the first 10%
only takes only 4%. Early in the history of EMP engineering, some
bright young star made the practical observation that if we define
the rise time of a pulse as the time it takes to get from 10% to
90% of the maximum, then the pulse rise time is 100% - 40%- 4% =
56% of .44 T, which, lo and behold, is .25 T! Regardless of the
validity of the premise, and regardless of the fact that the “10
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to 90%” rise time of a sine wave is only .16 T, the
paradigm was enshrined:

£ = 1/T

o .25/t, (13)

where:

f, = equivalent frequency of the pulse frequency of the sine wave
T = period of the sine wave
t, = 100% rise time of the sine wave and 10 to 90% rise

time of the pulse.

This result is used in PAN 890, pp 7-8 to derive the more
commonly used expression

f3 = 1/T = .35/t, (14)
where

f3 = 3 dB equivalent frequency of the pulse = frequency of the
sine wave whose amplitude is 3 dB down from the sine wave of
frequency f, due to frequency response limitations.

Arbritrary Temporal Parameters of the Exponential Model

The “10 to 90%” rise time t,. and the “full width half maximum’
pulse width tg,, or ty; (the time it takes B(t) to go from Bp/z to
B, to B,/2 again) are defined arbitrarily, and are not inherent
in the exponential model. We cannot easily solve Equation 1
explicitly for t in terms of selected values of B(t), but we can
solve the equations resulting from setting the source functions
equal to selected values of B(t). This yields first
approximations of the required values of t, which can be refined
by successive approximation using Newton’ s method. For example,
to find the value of t for which B(t) = .9Bp , we set the
charging source function equal to 9B, :

- -t90' /1 _
1-e -9B,
=> tgo' = -7ln(1-.9B) (15)

This value is substituted in Equation 1, yielding B(tgy')
somewhat less than .9B, (see Figure 3). The difference between
- 9B, and tg,') is the éﬁfferential of B, or aAB. It is used to
calculate a time differential as follows:

at = aB/(dB/dt) g

The time differentail is added to tgy' to obtain tgy", and
B(tgo"), which is still slightly less than .9B,, is calculated.
This yields a new aB, from which a new at is calculated, and so
on until B(tgy) is sufficiently close to .9B, . Three iterations
are usually sufficient for tg,, which has the worst first
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approximation. Values of t;5 and tgo, for B(t) = 10 and 50% of B,
are obtained similarly for the growth of B(t), and the value of
tgoq fOr B(t) = 50% of B, for the decay of B(t) is obtained by
setting the discharging ‘source function equal to -5B, 3

Boe -at50d'/r = 'SBP
=> tgoq' = -T/a ln(kp /2) (16)

The 10 to 90% rise time of the pulse is tgyy - t;o and the "full
width half maximum" pulse width is tgoq =tgeg-
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Figure 3. Arbitrary temporal parameters by successive
approximation
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