MAGNETIC FIELD (B) & SURFACE CURRENT (J) SENSOR #### MODEL B-S25 #### DESCRIPTION The PRODYN Model B-S25 is a half loop high frequency sensor which can be used as a B-dot sensor or can be used to measure the time rate-of-change of surface current density since the magnetic field over a conductive sheet is related to surface current density. When mounted to a conducting surface the B-S25 produces a voltage output in response to a time variant B field. The loop area is encapsulated to provide breakdown resistance and protection from the environment. The equation pertinent to this sensor when used as a B-dot sensor is provided on the Model B-24 data sheet. The equation relating to surface current density measurements is: $$V_0 = A_{eq} \mu_0 \frac{dJ_s}{dt} \sin \theta = \text{sensor output (in volts)}$$ where A_{eq} = sensor equivalent area (m²) μ_{0} = permeability of free space (4 π x 10⁻⁷ H/m) J_{s} = surface current density (Amps/m) $\sin\theta$ = angle between axis and J_{s} vector ### **ELECTRICAL SPECIFICATIONS** | Equivalent Area (A_{eq} , Differential) 4.5 x 10^{-6} m ² | |---| | Frequency Response (3dB point) | | Risetime (t _r 10-90) | | Maximum Output (peak) | | Output Connector | ## PHYSICAL SPECIFICATIONS